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Supplemental Methods 
 
Screening Session 
Participants were asked to complete a comprehensive questionnaire during a screening session 
that was designed to eliminate any indication as to the intent of the study design prior to the 
scanning session. This screening session occurred several days to 2 weeks before the scanning 
session. The questionnaire included a Delphi survey of 26 exploratory questions about 
participants’ ideas about music and their uses of music in their daily life. These questions ranged 
from such topic areas as whether participants use music to alter their mood to whether they enjoy 
mentally analyzing complex musical compositions.  In addition, the participants were asked 
questions about their formal and/or informal musical training. The participants were asked to 
rank their personal preferences for eleven musical genres. The eleven musical genres included: 
rock, gospel, blues, rap/hip hop, jazz, classical, country, alternative (low-fi, experimental, punk, 
techno, mgmt, disco), metal, pop, and Broadway.  The questions about participants formal years 
of musical training was defined by category: 0 years, 1-3 years, 4-7 years, 7-10 years and 10 plus 
years and a specific question about the musical instrument(s)  the participant had received their 
formal or informal training on. This included their primary instrument as well as any secondary 
instruments (such as piano or guitar) and the number of years on each instrument.  Participants 
were asked to estimate how much time they spend listening to music (average listening time was 
3.4 hours per day). In addition, participants were asked whether they could speak or read a 
foreign language (French, Spanish, German or ‘other’) and were asked whether they could speak 
(or read) Chinese. Participants were also asked to rank their preferences for colors ranging from 
red to black (red, yellow, orange, blue, green, white, and black). Training was provided to 
participants on how to use the Visual Analog Scale (VAS) both in the screening session and just 
prior to the scanning session. Finally, each participant was asked to provide their most favorite 
song title and artist. In order to ensure that the favorite song was exactly what the participant 
requested, songs were carefully noted including artist, recording year, performing group and any 
other specific information that was needed. For example, one participant wanted the Prelude in D 
minor Op. 23 no.3  by Sergy Rachmaninoff performed by Vladimir Ashkenazy. Participants 
were allowed—and even encouraged—to feel free to change what they considered their favorite 
song up until the day before the scanning session. This was done to ensure that our participants 
had been given ample time to determine what they would consider their favorite song. Many of 
the participants needed several days to determine what they considered to be their number one 
song, the one that ‘rocks their world’, ‘floats their boat’, and ‘is my favorite song.’ No 
restrictions were given as to the genre (i.e. the type) of music or whether their favorite song 
should or should not have lyrics.  Note that several of our participants had a favorite song that 
was outside of their preferred genre.  
 
Additional MR Scanning Session Information 
During the scanning session, all songs were presented to the participants without their prior 
knowledge of what music was to be played to them (apart from their favorite song). Thus, though 



they had reported a particular preference for a particular genre of music, all songs appeared to 
the participants as randomly presented. We include that the songs appeared as randomly 
presented because we presented the songs in an over-arching scheme that began with their 
preferred genre. However, given the enormous variety of choices for songs to present, that our 
participants did not know the music that they would be hearing (apart from their favorite song) 
and that our participants completed a questionnaire that highlighted 11 types of music to 
prioritize, we believe that, at least from our participants’ perspective, the music was randomly 
presented.  Thus, their brain responses would align with this perspective.  Following the 
presentation of every song, each participant was asked to rate their preference for the song using 
the visual analog scale (VAS) as discussed in the Methods. 
 

Participants’ Pre-Selected Favorite Songs 
 

Favorite Song Artist(s)/Composer 
April 29th, 1992 Sublime 

Come, Thou Fountain of Every 
Blessing Mormon Tabernacle Choir 

Das Verlassene Magdlein Hugo Wolf 
Days of Elijah Robin Mark 

A Better Son/Daughter  Rilo Kiley 
Friends in Low Places Garth Brooks 

Gimme Shelter The Rolling Stones 
Breakeven The Script 

Human Nature Michael Jackson 
Love Like Crazy Lee Brice 

Love the Way You Lie Rhianna & Eminem 
Motorcycle Drive By Third Eye Blind 

Name Goo Goo Dolls 
1Nessun Dorma from Turandot Puccini 

Non Je ne Regrette Rien Edith Piaf 
One More Chance The Notorious B.I.G 

3Symphony No. 2 in C minor Gustav Mahler 
Rockin That Thang The Dream 

She Harry Connick Jr. 
2Prelude in D Minor, Op. 23, No. 3 Rachmaninov  

You’re Not Alone Meredith Andrews 
 
1 Performed by Luciano Pavarotti 
2 Performed by Vladimir Ashkenazy 
3 Performed by The City of Birmingham Symphony Orchestra Conducted by Simon Rattle (last 5 min. from Mvt IV) 
 
 
 
Additional Description of Network Methodology 



 
Threshold Determinations 
1. Thresholds for Binarization of the Network 
For the voxel-wise network, a Pearson’s correlation coefficient was used to correlate the time 
series in each voxel. After creating the correlation matrix, a threshold was applied to yield a 
sparse matrix. There are researchers that suggest it is preferred to not threshold the networks and 
utilize a fully connected, weighted network (1). However, we have demonstrated that when 
connected networks are utilized in an information processing model, they do not exhibit 
behaviors expected from a small-world network (2). In addition, fully connected networks must 
be much smaller (100s of nodes) than the networks that we use (~21,000 nodes) due to the 
computational complexity of the algorithms used to analyze the networks. We feel that the 
optimal solution to this issue remains equivocal and believe that either method is currently valid. 
We prefer the use of sparse networks because it allows for higher resolution networks with many 
more nodes. We apply a threshold using the formula of N = Ks that has been shown to relate 
network size to density in random small-world networks (3). This threshold ensures that 
comparisons are being made between networks of comparable density relative to the number of 
network nodes. For the networks used here, all subjects had approximately the same number of 
nodes so network size was not a limiting factor. For this paper, a threshold S = 2.5 was used, so 
the relationship of N = K2.5 was used. The choice of S=2.5 results in networks that exhibit 
comparable size:density ratios observed in other naturally occurring networks (4). In addition, 
we have demonstrated in prior work that networks tend to fragment when S is above 3.0 (5), and 
the reproducibility of brain networks is highest at thresholds with S between 2 and 3 (6). Once 
the threshold was applied, correlations above the threshold were given a value of 1, and those 
below the threshold were given a value of 0.  
 
2.  Definition of Network Hubs 
We used the top 20% to generate representative images to allow visualization of the data. Based 
on the Pareto Law, the 20% choice is an heuristic. This is common in systems that exhibit power 
law or power law-like behaviour. We acknowledge that this cutoff is arbitrary but it was used 
only for the visual depiction of the location of network hubs. In fact, there is no absolute 
definition of a hub. We have recently shown that reproducibility of hubs within subjects across 
runs falls off dramatically above 20% and is relatively stable between 20 and 25% (7). All 
comparisons across conditions used actual network statistics without applying this cutoff. 
 
Determination of Community Structure 
1. Module Determination 
One can identify the community structure or modular organization of a network with modules or 
neighborhoods defined as groups of nodes that are more connected to each other than other 
groups of nodes (8). Modularity is currently considered the gold standard to define community 
structure whereby a modularity metric Q is calculated that describes optimal modular partition. 
Newman-Girvan developed modularity to define the resolution at which one looks at the 
community structure after hierarchical partitioning is performed (9). Q identifies the partition 
that maximizes the within community links relative to the number of within community links in 
a random network. We used an algorithm called Qcut (10) to break each participant’s functional 
brain networks into the modules. The partition that mazimized Q was chosen for each run of 
Qcut. As with all community structure algorithms, Qcut potentially yields different solutions 



each time it is run. We ran Qcut on each subject’s network 10 times for each condition. Over 
these 10 runs, it became clear which run(s) yielded the highest value for Q; in practice, the same 
modular structure with highest Q value would usually occur in many of the 10 runs, increasing 
our confidence in the optimal result for modular organization. The run with the highest Q was 
selected as the representative modular partition for that subject. 
 
2. Scaled Inclusivity 
Comparing modular organization across individuals is difficult and an ongoing area of research. 
Scaled Inclusivity (SI) is a metric that makes it possible to evaluate the consistency of the 
community structure across different subjects with similar brain functional networks (11). In 
brief, SI measures the overlap of modules across subject’s networks. If modules exhibit 
disjunction, then the SI values are penalized. The equation for SI is: 
 

 
 
where SIv represents the scaled inclusivity of a node V which is in module A in subject i and 
module B in subject j. SA and SB represent sets of nodes in modules A and B, respectively, and 
║denotes the cardinality of a set (12). An SIv = 1 would indicate perfect overlap of modules from 
2 different subjects. As the overlap decreases, the SIv becomes less than 1. There are also 
penalties to the value of SIv for different sizes of the modules as shown by increasing the 
denominator in the equation.  
 
Si is calculated for all the community structure between all participants. In order to determine the 
consistency of any particular module, the individual with the highest SI values in the region of 
interest is identified. A subject-specific SI map is then created from a weighted sum of the maps 
comparing the subject’s modules to all other subject’s modules. This subject-specific SI map 
shows the consistency of a particular node falling within the same module across subjects. SI is 
the weight used in these weighted sums. In an ideal situation with all subjects having the exact 
same community structure, SIv would = n-1 in every voxel. However, this is highly unlikely in 
biological data, so SI values are typically smaller than N-1. As part of this study, these SI 
modularity maps are the maps presented in Figures 2 and 4 of the main manuscript. For a more 
detailed description of SI, see Steen et al (12). Because the final SI calculations yield a single 
value in each voxel, there is no variance, and traditional hypothesis tests cannot be utilized on 
this data. 
 
 
Supplemental Results 
1. Issue of Song Order 
While we do not believe that there was an effect of song order on our results, we present here all 
of the data about song order. Each participant’s favorite song was presented last (6th) after 
presenting the 5 pre-selected songs. These 5 pre-selected songs were presented for each 
participant in an order determined by how the participant ranked 11 genres of music at the 
screening session, which occurred several days before the MR scan. We chose to present the 
songs in order from the participant’s most preferred genre to least, always ending with the 



unfamiliar Chinese opera (5th song presented). The song with the highest VAS score (i.e. most 
Liked song) was the first song for 8 participants, the second song for 8 participants, the third 
song for 2 participants, and the fourth song for 3 participants. The song with the lowest VAS 
score (i.e. most Disliked song) was the second song for 3 participants, third song for 4 
participants, the fourth song for 3 participants, and the fifth song (unfamiliar, Chinese Jinna 
Opera Band for all participants) for 12 participants.  The participants did not rank the musical 
selections. Rather, they simply used the VAS to show how much they liked the different songs 
(nothing was said about genres). 11 subjects reported a top “Like” VAS preference for the 
classical, 4 for the country, 3 for the rock, 3 for the rap, and 0 for the unfamiliar song. For the 
Dislike condition (subjects’ lowest VAS score), 1 reported the classical, 2 reported the country, 3 
reported the rock and 3 reported the rap song. 12 reported the unfamiliar music as their least 
preferred music. 
 
2. Connectivity between the precuneus and the Default Mode Network 
A post-hoc analysis was performed to measure the connectivity between the precuneus and the 
remainder of the DMN. Figure S1 shows the ROI’s used for the precuneus (an 12 mm radius 
sphere located at 0, -54, 34 in MNI space) and the DMN; these were derived from the work of 
Shirer et al as determined using independent components analysis (13). The red areas show the 
DMN in its entirety. This image was kindly provided by Vinod Menon. The Cyan sphere shows 
the precuneus ROI used in this work. The green regions show the ROI that was used in this work 
to count connections from the precuneus ROI to the other portions of the DMN. The number of 
direct connections from the precuneus to voxels within the remaining DMN was minimal with 
the average ranging from 2 to 3 connections per voxel across the study conditions. We therefore 
measured connections one step further in the network. We term these 2nd order connections. 2nd 
order connections are those connections that emanate from voxels directly connected to the 
precuneus ROI. Figure S2 shows the statistics for the number of 2nd order connections from 
precuneus ROI to the ROI located in the other portions of the DMN. These findings support the 
modularity findings showing differences in the precuneus module’s connection to the rest of the 
DMN. The results showed a significant (p = 0.04) increase in connectivity in the Like condition 
compared to the Dislike condition. There was no significant difference between Like and 
Favorite (p = 0.08) or between Dislike and Favorite (p = 0.71).  
 
 



 
Figure S1: Depiction of region-of-interests used in the statistical analyses.  
 

 
 
 
Figure S2: Average number of 2nd order connections for each voxel between the precuneus ROI 
and the ROI located in the anterior and posterior aspects of the default mode network (DMN). 
There was a significantly greater number of 2nd order connections between the precuneus and the 
DMN (p = 0.04) in the Like condition compared to the Dislike condition.  
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